

TI-NSPIRE[™] CXII PYTHON

STUDENT NAME:_____

Directions: Use this document as a guide with the .tns file on your TI-Nspire CXII calculator.

Student Tasks:	Student Responses/Observations
Getting Ready: Name that Tune On the next page listen to the three songs that are written in Python and played on the TI- Innovator Hub. Can you name that tune?	Can you name each of the three songs played by the name_that_tune() program?
You will learn how to write the song Twinkle-Twinkle Little Star in python and play the song on your calculator and Hub. Stay tuned and listen up to learn how!	
Science/Music Activity 1: How does a violin make sound? The next page simulates a plucked violin string. Watch the simulation and notice all of the ways the string vibrates. The "fundamental" is the perceived tone—the overtones affect the sound quality of the note.	
Coding Challenge 1: Coding a tone Write a program on the next page using the sound.tone(frequency, time) method. Explore different tones by changing the frequency measured in Hertz, vibrations per second (abbreviated as Hz), and the time.	What is your favorite frequency? Give your tone an appropriate name.
What is your favorite frequency? Give this tone an appropriate name. For example sound.tone(100,5) could be named "Boooooop"!	

TI-NSPIRE™ CXII PYTHON	STUDENT NAME:
(Optional) Explore More: Speaker Activity - How does a speaker work	How does a speaker produce a sound you can hear?
The next page simulates a 500 Hz electrical voltage wave flowing into a	beaker's coil. Notice the A It makes radio waves that vibrate our eardrums.
air pressure wave in front of the cone increases and decreases as the co	's voltage rises and B It pushes and pulls on air molecules producing pressure
falls. Try different frequencies.	waves that vibrate our eardrums.
	C It emits light that evokes emotions in our brain.
	Look at the back of your Hub. Why are there holes in the
	Hub's case over the speaker labeled SOUND
	necessary?
	A So the speaker's energy, carried by air molecules, can
	pass freely through the case.
	B To reduce the use of plastics.
	C So an air molecule that comes out of the speaker can hit
	your eardrum.
Coding Challenge 2: Range of Human Hearing	What is the highest frequency that you can make?
Write a program on the next page using sound.tone(frequency, time) to c	scover the highest and
lowest frequency the Hub can make. Note: If you program the Hub with a	frequency that it cannot What is the lowest frequency that you can make?
make, you will receive an error message. Be sure you can hear the differ	nce between two
frequencies as you explore the upper and lower limits of the Hub's range	
(Optional) Explore More: Ear Activity - How does your ear work?	Choose the action that is NOT a step in human hearing.
Sound is changing air pressure that moves as a physical wave. A speake	creates sound by A Sound waves are focused onto the eardrum by the outer
pushing and pulling on air particles to create high and low air pressure w	ves. We hear by ear.
sensing these air pressure waves. The outer ear focuses waves into the	ar canal and onto the B The vibration of the eardrum is conducted to the inner ear
eardrum. The eardrum vibrates with the same frequency and strength as	he wave. Next, three by small bones in the middle ear.
tiny bones in the middle ear transmit the eardrum vibrations to the audito	window. The fine hairs C The auditory nerve conducts impulses from the inner ear
of the inner ear move with the vibrations of the wave. The auditory nerve	senses the movement hairs to the brain.
and sends signals to the auditory cortex of the brain. The brain processe	the nerve signals into D The eye sees the movement of air molecules and
the sounds that we perceive.	perceives a tone.

TI-NSPIRE [™] CXII PYTHON	Student Name:
Optional) Explore More: Microphone Activity – How does a microphone work? The next page simulates a 500 Hz air pressure wave hitting the diaphram of a microphone the voltage wave increases and decreases as the air pressure from the sound rises and fa different frequencies.	
Science/Music Activity 2: Music Tempo The next page simulates a metronome. Notice the swinging arm and the time required to back and forth. Listen to the tempo produced. Try tapping your foot to the beat.	
Coding Challenge 3 Calculating Tempo Background: To calculate the number of seconds in a beat, divide 60 by the BPM. This calculation will give the number of seconds a beat will last.	
Calculate the number of seconds for one beat when the tempo is 100 BPM. Challenge: Play the orchestral tuning note A4 (440 Hz) for one beat at a tempo of 100 BF BPM, and 140 BPM.	PM, 60
* Use the sleep(seconds) method so the entire note is played. Then use a second sleep(2 method as a rest between each note.)
Science/Music Activity 3: Duration of a Note The next page simulates three notes, how to code them, and how they sound. Listen to th duration of each note. Do you hear the difference? Notice the calculation of time for each You will practice this calculation in the upcoming Challenge 4.	

TI-INNOVATOR™ STEM PROJECT

TI-NSPIRE[™] **CXII P**YTHON

STUDENT NAME:_____

Coding Challenge 4: Coding Notes Play orchestral tuning A4 (440Hz) for the following notes with a two second rest between each. quarter note @ 100 BPM half note @ 100 BPM whole note @ 100 BPM	
quarter note @ 60 BPM half note @ 60 BPM	
whole note @ 60 BPM	
Coding Challenge 5: Frequency of Notes	
Use the method sound.note("note", time) to play a whole note of C4 at 100 BPM (2.4 seconds).	
Now try changing to C5. Do you hear the difference?	
Try a D4 now; how does it compare with C4?	
Coding Challenge 6: Reading Notes	
Read the two 1/2 notes from the staff and write a program to play each note at 100 BPM.	
Separate the two notes with a brief rest of 1/10 second with the method sleep(.1).	

TI-INNOVATOR[™] STEM PROJECT

TI-NSPIRE[™] CXII PYTHON

STUDENT NAME:_____

Coding Challenge 7: Do-Re-Mi Write a program to play each note of Do-Re-Mi-Fa-Sol-La-Si-Do as whole notes. This is an entire octave. C4 D4 E4 F4 G4 A4 B4 C5 Recall at 100 BPM a whole note lasts for 2.4 seconds. The first note Do is "C4" and the last note Do is "C5".	
Coding Challenge 8: Sound Effects Common sound effects are a sequence of notes, each played for a duration of time. For example, a doorbell is the note E4 followed by C4. On the next page, listen to a doorbell sound effect. How does changing the octave to E5 and C5 change the sound? After playing with the example, create and code your own sound effect and give your sound effect a name.	What is the code for your sound effect? What is your sound effect name?
Science/Music Activity 4: Playing Twinkle The next page is a simulation of the song Twinkle Twinkle Little Star playing on the Hub. Watch the simulation, read the staff's notes, and watch the corresponding finger placement on the piano keys.	
Coding Challenge 9: Coding Twinkle Write a program to play the first two bars of Twinkle with a tempo of 100 BPM. Use the two memory aids FACE and Every Good Boy Does Fine. * The ¼ note is .6 seconds and the ½ note is 1.2 seconds at 100 BPM. Twin-kle, twin-kle, lit - tle star,	

TI-INNOVATOR[™] STEM PROJECT

TI-NSPIRE[™] CXII PYTHON

STUDENT NAME:_____

ional) Coding Challenge 10: Play it Again, Sam the next page is a way to write the same two bars of Twinkle using Python lists and a for loop. y and study this program and listen for a mistake.
to find and fix the mistake in the code. tt, try to change the tempo to 160 BPM.